AD-A277 005 #### **JENTATION PAGE** Form Approved OMB No. 0704-0188 e 1 nour per response including the time for reviewing instructions, searching existing data sources. Thection of information. Send comments regarding this burden estimate or any other aspect of PM shington readquarters Services. Unjectorate for information Operations and Reports, 1215 Jefferson sciement and Budget. Procrivors Reduction Project (0704-0188). Washington, DC 20503. REPORT DATE 3. REPORT TYPE AND DATES COVERED)8 March 1994 interim, 1 July 1992 - 1 March 1994 4. TITLE AND SUSTITLE 5. FUNDING NUMBERS New Molecular-Based Routes to Binary Main Group Metal Sulfides G: N00014-92-J-1828 R&T PR: 44135035---01 6. AUTHOR(S) William S. Rees, Jr. and Gertrud Kräuter 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER School of Chemistry and Biochemistry and Tr No. 2 School of Materials Science and Engineering Georgia Institute of Technology Atlanta, Georgia 30332-0400 9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER Department of the Navy Office of the Chief of Naval Research Unknown Arlington, Virginia 22217-500 94-08231 11. SUPPLEMENTARY NOTES Accepted for Publication in: Phosphorus, Sulfur and Silicon. 12a. DISTRIBUTION / AVAILABILITY STATEMENT This document has been approved for public release and sale; its distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Metal thiolates of the general formula $M(SR)_2$ (M = Pb, Zn, Cd) and Cl-Hg-SR (R = alkyl) have been prepared and characterized by IR and NMR spectroscopic techniques, TGA and, in selected cases, single crystal X-ray diffraction. The metal bis(thiolate) compounds can be converted into the related metal sulfides by thermolyses. The solid state materials have been characterized by XRPD, SEM and, in selected cases, by particle size determination. The volatile pyrolytic co-products have been isolated and characterized by GC/MS. The decomposition pathways of mercury chlorothiolates are more complicated and depend on the nature of the organic group present in Cl-Hg-SR. > ELECTE MAR 1 4 1994 DTIC Quantity that mother 1 metal thiolates, uni-molecular precursors, main group metal sulfides 15. NUMBER OF PAGES 14 16. PRICE CODE SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 20. LIMITATION OF ABSTRACT NSN 7540-01-280-5500 14. SUBJECT TERMS Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102 III. #### OFFICE OF NAVAL RESEARCH GRANT N00014-92-J-1820 R&T Code 4135035---01 Technical Report No. 2 New Molecular-Based Routes to Binary Main Group Metal Sulfides by William S. Rees, Jr., Gertrud Kräuter and Virgil L. Goedken Accepted for Publication in Phosphorus, Sulfur and Silicon School of Chemistry and Biochemistry and School of Materials Science and Engineering Georgia Institute of Technology Atlanta, Georgia 30332-0400 8 March 1994 Reproduction in whole or in part is permitted for any purpose of the United States Government This document has been approved for public release and sale; its distribution is unlimited. | Acces | ion For | | | | |--------------------|-----------------|---|--|--| | | CRA&I | | | | | DTIC | | | | | | | ounced | Ċ | | | | Justifii | cation | | | | | By
Distrib | ution / | | | | | Availability Codes | | | | | | Dist | Avail a
Sper | | | | | A-l | | | | | ### NEW MOLECULAR - BASED ROUTES TO BINARY MAIN GROUP METAL SULFIDES #### WILLIAM S. REES, JR. AND GERTRUD KRÄUTER Department of Chemistry and Materials Research and Technology Center The Florida State University Tallahassee, Florida 32306-3006 SUBMITTED FOR PUBLICATION IN PHOSPHORUS, SILICON AND SULFUR SYMPOSIUMS PROCEEDINGS: RECENT ADVANCES IN THE CHEMISTRY OF MAIN GROUP ELEMENTS MANUSCRIPT NUMBER: ### NEW MOLECULAR - BASED ROUTES TO BINARY MAIN GROUP METAL SULFIDES # WILLIAM S. REES, JR.* AND GERTRUD KRÄUTER Department of Chemistry and Materials Research and Technology Center The Florida State University, Tallahassee, Florida 32306-3006 Metal thiolates of the general formula M(SR)₂ (M = Pb, Zn, Cd) and Cl-Hg-SR (R = alkyl) have been prepared and characterized by IR and NMR spectroscopic techniques, TGA and, in selected cases, single crystal X-ray diffraction. The metal bis(thiolate) compounds can be converted into the related metal sulfides by thermolyses. The solid state materials have been characterized by XRPD, SEM and, in selected cases, by particle size determination. The volatile pyrolytic co-products have been isolated and characterized by GC/MS. The decomposition pathways of mercury chlorothiolates are more complicated and depend on the nature of the organic group present in Cl-Hg-SR. Key Words: metal bis(thiolate), mercury chlorothiolate, single source precursor, decomposition studies, metal sulfide #### INTRODUCTION Many binary metal sulfides possess interesting electrical and optical properties such as semiconductivity, photoconductivity and luminescence. Metal sulfides usually are prepared by the reaction of metal salts and H₂S in aqueous solution. However, metal sulfides prepared by this method frequently contain large amounts of impurities and often are amorphous. The reaction of metal alkyls and hydrogen sulfide leads to the formation of pure metal sulfides, however, problems persist due inhomogenous mixing of the starting materials, the intrensic high reactivity of the metal alkyls and the toxicity of hydrogen sulfide. Single source processing offers obvious advantages. While the single source precursor method has been explored extensively for 13-15 semiconductors in recent years,² single source precursors leading to 12-16 and 14-16 compounds have been studied much less extensively. Metal thiolates - the sulfur analogs of metal alkoxides - possess the potential to serve as single source precursors for metal sulfides. Due to their polymeric structures, many metal thiolates, including zinc- and cadmium thiolates, are insoluble in typical organic solvents, making their purification by recrystallization difficult and often impossible. Two approaches can be envisioned to overcome these difficulties, one of which involves the choice of bulky organic groups to encourage the formation of compounds with a relatively low degree of association. This idea has been realized by Bochmann and coworkers who recently have prepared cadmium bis(supermesitylthiolate) and have shown that this soluble compound decomposes to give cadmium sulfide.⁵ However, metal thiolates containing such bulky organic groups show a high degree of thermal stability and, therefore, high temperatures are required for their decomposition - in the case of Cd(SMes*)₂ a temperature of about 450°C at 10-2 Torr is necessary. Complementing the synthesis of metal thiolates with bulky groups, the formation of adducts with Lewis bases can be used to obtain more soluble metal thiolate complexes. The Lewis base should be bonded only weakly to the metal center to insure that it can be cleaved easily under mild conditions, thereby not interfering with the decompostion process. Steigerwald and coworkers have reported that phosphine ligands fullfill these requirements for Cd(SePh)2.6 The present work describes the utilization of 1-methylimidazole to form soluble adducts of zinc- and cadmium bis(alkylthiolate) compounds and the decomposition of the unsolvated and solvated derivatives. The imidazole ligand was chosen because of its known role in the formation of soluble zinc mercapto complexes in biological systems.⁷ Additionally, it has been reported recently that N-alkylimidazole solutions of chalcogens show a remarkable reactivity towards several elemental metals and metal sulfides.8 In contrast to zinc- and cadmium *bis*(thiolate) compounds,⁹⁻¹¹ the analogous base-free lead *bis*(thiolate) derivatives¹² as well as mercury chlorothiolates⁹⁻¹¹ are soluble in organic solvents. The syntheses, characterization and decomposition of these compounds are discussed. #### **RESULTS AND DISCUSSION** Zinc- and Cadmium Bis(thiolate) Compounds Zinc- and cadmium *bis*(alkylthiolate) compounds have been prepared by the reaction of the metal acetates with the appropriate thiol in aqueous ethanol (eq. 1). $$M(OOCCH_3)_2 * n H_2O + 2 R-SH -----> M(SR)_2 + HOOCCH_3$$ (1) M = Zn, R = iPr, tBu; M = Cd, R = iPr, tBu, Bz TABLE 1 Thermogravimetric analyses of zinc and cadmium bis(thiolate) compounds | compound | weight residue | | | |-----------------------|----------------|------------|--| | | observed | calculated | | | Zn(SiPr) ₂ | 46.8 % | 45.2 % | | | $Zn(StBu)_2$ | 42.4 % | 40.0 % | | | Cd(SiPr) ₂ | 55.5 % | 54.9 % | | | $Cd(StBu)_2$ | 49.2 % | 49.6 % | | | Cd(SBz) ₂ | 42.5 % | 40.2 % | | FIGURE 1 TGA plot of Cd(SBz)₂ (10°C/min, N₂ atmosphere) The reaction affords the homoleptic metal thiolates in good yields as colorless powders which are virtually insoluble in typical organic solvents. The decomposition of the prepared compounds first was studied by thermogravimetric analysis. The TGA-plots show a sharp decline in weight beginning at about 200°C. The observed weight loss suggests that in each case the desired binary metal sulfide is formed. Figure 1 shows the TGA plot for Cd(SBz)₂ and Table 1 summarizes the results of the thermogravimetric analyses. Decompostion then was carried out by heating samples c the prepared compounds under vacuum (250°C, 4h). The volatile co-products were trapped and analyzed by GC/MS. The solid state material was characterized by XRPD and SEM measurements. Dialkylsulfides were found to be the only volatile product of the decomposition. In the case of the metal bis(t-butylthiolate) compounds, however, several volatile decomposition products were isolated. By heating a freshly prepared sample of dit-t-butyl sulfide to 250-300°C for 4h it was shown that this compound was unstable at the temperature present during the metal thiolate thermolysis process and decomposes, forming dialkyldisulfide, coupled alkane, olefin and thiol. The XRPD patterns of the obtained solid state materials were indicative of cubic zinc sulfide (Wurzite) (Figure 2) and hexagonal CdS (Greenockite) (Figure 3), respectively. However, the decomposition of Cd(SBz)₂ leads to the formation of the relatively uncommon cubic CdS (Hawleyite). FIGURE 2 XRPD pattern of ZnS (from Zn(SiPr)2, 250°C, 4 h) Decomposition also was carried out by heating a suspension of the prepared zinc- or cadmium bis(t-butylthiolate) in decalin (b. p. 190°C) for 3 days. A complete conversion into the respective metal sulfide was observed. The XRPD patterns of the obtained solid state materials resemble those of the metal sulfides obtained by solid state decomposition. The size of the formed metal sulfide particles was determined. Figure 4 shows the particle size distribution found for ZnS. As mentioned above, all of the zinc- and cadmium bis(thiolate) compounds were found to be insoluble in typical organic solvents as initially prepared. However, in the presence of 1-methylimidazole, three of the five prepared metal bis(thiolate) derivatives readily are soluble in toluene. Upon removal of the solvent, the imidazole adducts are isolated (Table 2). Thermogravimetric analysis was performed to examine the decomposition of the adducts. In the case of [Cd(SBz)₂]₂ * L (L = 1-methylimidazole), the imidazole ligand is cleaved off under mild conditions. The -- now uncoordinated -- Cd(SBz)₂ decomposes in the usual manner (Figure 5). FIGURE 3 XRPD pattern of CdS (from Cd(SiPr)₂, 250°C, 4 h) FIGURE 4 Particle size distribution in ZnS (from Zn(StBu)2 in decalin, 190°C, 3 days) FIGURE 5 TGA plot of [Cd(SBz)₂]₂ * L (10°C/min, N₂ atmosphere) TABLE 2 1-Methylimidazole adducts of zinc and cadmium bis(thiolate) compounds | metal bis(thiolate) compound | imidazole adduct | | |------------------------------|---------------------------|--| | $Zn(SiPr)_2$ | Zn(SiPr)2 * 2 L | | | Cd(SiPr) ₂ | Cd(SiPr) ₂ * L | | | Cd(SBz) ₂ | $[Cd(SBz)_2]_2 * 1$ | | #### L = 1-methylimidazole However, in case of the imidazole adducts of $Zn(SiPr)_2$ and $Cd(SiPr)_2$, higher temperatures had to be applied to cleave off the imidazole ligands, presumably due to the fact that in these compounds the metal complex/ligand ratio is 1:2 and 1:1, respectively, as compared to 2:1 in the case of $Cd(SBz)_2$. #### Lead Bis(thiolate) Compounds Lead bis(thiolate) compounds can be prepared analogous to the zinc- and cadmium bis(thiolate) derivatives by the reaction of lead acetate and thiol in aqueous ethanol (eq. 2).13 $$Pb(OOCCH_3)_2 * 3 H_2O + 2 R-SH -----> Pb(SR)_2 + 2 HOOCCH_3$$ (2) R = tBu, iBu, sBu TABLE 3 Thermogravimetric analyses of lead bis(thiolate) compounds | compound | weight residue | | |-----------------------|----------------|------------| | | observed | calculated | | Pb(StBu) ₂ | 62.1 % | 62.1 % | | $Pb(SiBu)_2$ | 63.1 % | 62.1 % | | Pb(SsBu)2 | 64.2 % | 62.1 % | FIGURE 6 XRPD pattern of PbS (from Pb(StBu)2, 250°C, 4 h) The compounds are yellow crystalline solids, which are soluble in polar organic solvents. The thermogravimetric analyses show that lead bis(butylthiolate) compounds decompose at about 200°C to give lead sulfide (Table 3). The solid state decomposition under vacuum (250°C, 4h) yields highly crystalline cubic lead sulfide (Galena) as revealed by XRPD (Figure 6) and SEM¹¹⁻¹² measurements, respectively. Decomposition also can be achieved by refluxing a suspension of the lead bis(butylthiolate) compounds in decalin for 3 days. The recovered lead sulfide is highly crystalline, as indicated by XRPD analysis. #### Mercury Chlorothiolates Mercury dichloride reacts with one equivalent of thiol to yield mercury chlorothiolates (eq.3). $$HgCl_2 + R-SH \longrightarrow Cl-Hg-SR + HCl$$ (3) R = iPr, neo-Pent, Bz FIGURE 7 Solid state structure of ClHgSBz + TMEDA The mercury chlorothiolates are colorless crystalline solids which are soluble in many polar and potentially coordinating solvents. Several of the prepared compounds have been characterized by single crystal X-ray diffraction. The benzyl derivative is soluble in tetramethylethylenediamine (TMEDA) and crystallizes as a monomeric TMEDA adduct (Figure 7). Mercury chloro-i-propylthiolate crystallizes solvent-free, forming a polymeric chain as reported earlier. ¹⁴ The structure of the neopentyl derivative also contains a polymeric chain. This compound crystallizes from pyridine as an adduct (Figure 8). FIGURE 8 Solid state structure of ClHgSiPr + Py Samples of the unsolvated compounds were heated under vacuum (200°C, 4h). The *i*-propyl and neopentyl derivatives decompose to yield Hg₂Cl₂ and organosulfur compounds. The benzyl derivative forms highly crystalline black mercury sulfide (Metacinnabar), as determined by XRPD analysis, and benzylchloride. The metastable black HgS is converted slowly into the stable orange mercury sulfide (Cinnabar). We attribute the observed differences in the decomposition pathways to the higher stability of benzyl radicals, as compared to *i*-propyl and neopentyl radicals, assuming a radical decomposition process. #### CONCLUSION The prepared metal bis(alkylthiolate) compounds are useful single source precursors for the preparation of binary main group metal sulfides. They are obtained easily and in good yields. The reported compounds are stable towards water and oxygen. Their decomposition proceeds under mild conditions and yields crystalline and pure metal sulfides. The co-products are volatile and can be removed easily. The decomposition pathways of mercury chlorothiolates greatly depend on the organic group present in the studied compound. Apparently, compounds containing groups forming relatively stable radicals decompose to yield the desired mercury sulfide. #### **ACKNOWLEDGEMENTS** Financial support was provided by the Deutsche Forschungsgemeinschaft (postdoctoral fellowship to G. K.) and the Office of Naval Research Chemistry Division. We gratefully acknowledge Mr. Philippe Favreau for carrying out some of the preparative work, and Professor Ronald Clark, Mr. Michael Carris and Mr. Hiep Ly for assistance with TGA measurements. We are grateful to Mr. Tom Fellers for providing the SEM micrographs, Dr. Gerard Mignani (Rhône-Poulenc, France) for particle size determination and The Florida State University, Materials Research and Technology Center for instrument time on the TGA, XRPD and SEM instruments. #### **REFERENCES** - 1. R. A. Smith, Semiconductors, 2nd ed., Cambridge University Press, Cambridge, 1978. - 2. A. H. Cowley and R. A. Jones, Angew. Chem. Int. Engl. Ed., 28, 1208 (1989). - 3. K. Osakado and T. Yamamoto, *Inorg. Chem.*, 30, 2328 (1991). - 4. I. Dance, Polyhedron, 5, 1037 (1986). - 5. M. Bochmann, K. Webb, M. Harman and M. B. Hursthouse, Angew. Chem. Int. Engl. Ed., 29, 638 (1990). - 6. J. G. Brennan, T. Siegrist, P. J. Carroll, S. M. Stuczynki, L. E. Brus and M. L. Steigerwald, J. Am. Chem. Soc., 111, 4141 (1989). - 7. J. M. Berg, *Prog. Inorg. Chem.*, 37, 143 (1988). - 8. S. Dev, E. Ramli, T. B. Rauchfuss and C. L. Stern, J. Am. Chem. Soc., 118, 6385 (1990). - 9. W. S. Rees, Jr., G. Kräuter and V. Goedken, MRS Symposium Proceedings, Volume 283, Materials Research Society, Pittsburgh, PA, 1993, p. 859. - 10. G. Kräuter, V. L. Goedken, B. Neumüller and W. S. Rees, Jr., MRS, Abstract N.4.7, Fall Meeting, Boston, MA, Materials Research Society, Pittsburgh, PA, 1993. - W. S. Rees, Jr. and G. Kräuter, MRS, Abstract N 6.1, Fall Meeting, Boston, MA, Materials Research Society, Pittsburgh, PA, 1993. G. Kräuter, P. Favreau, B. Nunnally and W. S. Rees, Jr., MRS, Abstract N 4.8, - 12. G. Kräuter, P. Favreau, B. Nunnally and W. S. Rees, Jr., MRS, Abstract N 4.8, Fall Meeting, Boston, MA, Materials Research Society, Pittsburgh, PA, 1993. - 13. R. A. Shaw and M. Woods, J. Chem. Soc., 1569 (1971). - 14. P. Biscarini, E. Foresti and G. Pandella, J. Chem. Soc., Dalton Trans., 953 (1984). #### TECHNICAL REPORT DISTRIBUTION LIST - GENERAL Office of Naval Research (2)* Chemistry Division, Code 1113 800 North Quincy Street Arlington, Virginia 22217-5000 Dr. James S. Murday (1) Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000 Dr. Robert Green, Director (1) Chemistry Division, Code 385 Naval Air Weapons Center Weapons Division China Lake, CA 93555-6001 Dr. Elek Lindner (1) Naval Command, Control and Ocean Surveillance Center RDT&E Division San Diego, CA 92152-5000 Dr. Bernard E. Douda (1) Crane Division Naval Surface Warfare Center Crane, Indiana 47522-5000 Dr. Richard W. Drisko (1) Naval Civil Engineering Laboratory Code L52 Port Hueneme, CA 93043 Dr. Harold H. Singerman (1) Naval Surface Warfare Center Carderock Division Detachment Annapolis, MD 21402-1198 Dr. Eugene C. Fischer (1) Code 2840 Naval Surface Warfare Center Carderock Division Detachment Annapolis, MD 21402-1198 Defense Technical Information Center (2) Building 5, Cameron Station Alexandria, VA 22314 * Number of copies to forward